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Abstract 

The suitability of massively parallel architectures for carrying out efficient calculations 
of quasiclassical rate constants for atom-diatom reactive processes has been investigated. 
Problems related to the parallel structuring of the computational procedure, fixed and 
scaled speedups, efficiency factors and their dependence upon the size of the problem, 
and the number of processors are discussed. 

1. Introduction 

Numerical solutions of scientific problems quite often rely on the use of 
intensive computing procedures. This means that to obtain these solutions in a 
realistic time, use of modem parallel features of  advanced computers has to be 
made. To this purpose, both the numerical approach and the computing strategy 
need to be properly designed to take advantage of the parallelism. 

The scientific problem considered in this paper is the calculation of rate 
constants for a family of elementary gas phase reactions relevant to the modeling 
of complex non-equilibrium systems starting from first principles. In particular, we 
have investigated bi-molecular a tom-dia tom reactions. These systems are interesting 
per se because important for several modem technological applications [1] and as 
a model for some larger molecule reactions. 

The detailed state to state rate constant kvj, v,j,(T) at a given temperature T 
can be evaluated by integrating over the collision energy (Et0, the related reactive 
cross section S~ j' v'j' (Err), where vj (v ' j ' )  are the initial (final) vibrotational quantum 
numbers. In a quasiclassical mechanics approach, S~ j'v'j'(Etr ) Can be formulated in 
terms of  Pvj, vT,(Etr), the atom-dia tom reactive probability. Following a Monte 
Carlo approach [2], Pvj, vT'(Etr) can be estimated from a limited number of  trajectories 
N, by calculating the integral 
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Pvj. v ' j ' ( E t r )  = N - 1  fd¢l fd¢2fd¢3fdCgfd~sfv j .v , j , (¢1,¢2,¢3,¢4,¢5) , (1 .1)  
0 0 0 0 0 

where the variables ~ are related to initial position and momenta of the collision 
partners. The integrandfvj, vT, is a Boolean function that is unity when the integer 
value ofj~' + 1/2 and v~ + 1/2 obtained from the trajectory calculation are, respectively, 
equal to j '  and v'  (j~ and v~ are the classical equivalent of the rotational and 
vibrational quantum numbers evaluated by integrating the classical equations of 
motion). 

Each trajectory being a fully independent calculation, the integration of a 
batch of trajectories can be carried out in parallel by a pool of asynchronous 
processes cooperating according to a task farm model. A task farm model is based 
on a master process that manages the computation and dispatches the work to a set 
of  slave processes. In a hypercube architecture, this cooperation model can be 
implemented by mapping the master process on the host node and the slave processes 
on the distributed nodes. 

The paper is organized as follows: in section 2, the used hardware (NCUBE 
machines) and system software are given as well as the structuring of the program 
to be run on the parallel architecture are discussed. In section 3, speedups and 
performances of the restructured code are analysed. 

2. Restructuring the code for a hypercube 

A typical trajectory program consists of a preliminary section in which the 
random sequence initiator as well as physical constants are read in to generate some 
quantities of common use. The largest section of the program is embodied into a 
loop running over the trajectory index. Inside the loop, the necessary set of pseudo- 
random numbers are generated to obtain the starting conditions for the considered 
trajectory. After the validation of initial conditions, the recursive process of integrating 
in time positions and momenta starts. At the trajectory ending point, a determination 
of  its final properties is performed to derive the products'  properties and update the 
statistical analysis. 

As already mentioned, to structure the program for the parallel environ- 
ment [3-6] we have adopted a task farm model of cooperation [7] consisting of a 
master process running on the host and a set of  identical worker processes loaded 
on the nodes. The master process (see scheme 1) takes care of all I/O operations, 
dispatches the trajectory calculations to the nodes, and collects final results. To 
optimize the load balancing, a self-scheduling method assigning only one trajectory 
at a time to each worker node has been adopted. An attempt has also been made to 
determine the number of trajectories assigned at a time to a worker process (granularity) 
which maximizes the load balancing while minimizing the communication overhead. 
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Host program 

Read input data from file and do initializations 
Allocate and open a hypercube of N nodes 
Load program on nodes 
Broadcast initial data to all nodes 

Ntraject = 1 

seed = initiator 

For Nnode = 0 t o  N - 1 do 
random(seed, new_seed ,  rand) 
send (Ntraject, seed) to Nnode 
Ntxaject = Ntraject + 1 

seed = n e w _  seed 
next Nnode 

While Ntraject <= Max_traject d o  

random(seed, n e w _  seed, rand) 
Receive msg of type msgdone from node M 
send(Ntraject, seed + 1) to node M 
Ntraject = Ntraject + 1 

seed = new_ seed 
end_whi l e  

When a node ends its last trajectory send it a msg of  type msgend 
Wait final result from node 0 
Close hypercube 
Write results on file 

Scheme 1. Structure of  the host program. 

A parallel structuring of a computer code based on this Monte Carlo approach 
may not be trivial. Usually, the pseudo-random sequence is generated by an algorithm 
which transforms a given integer number (seed) into a real number in the interval 
O-1 and a new seed. In a scalar code, the integration of different trajectories is 
sequential and therefore the sequence of calls for the generation of  the needed set 
of pseudo-random numbers is strictly ordered. Instead, in a parallel environment, 
the generation of  the pseudo-random sequence is affected by non-determinism. As 
a result, the sequence (and therefore the set of  initial conditions) generated in one 
run may not coincide with that of other runs. In a parallel run, the generated 
sequence may also depend on the value of other working conditions. As an example, 
a variation of  the integration stepsize by changing the duration of  the trajectories 
may cause a different correspondence between the number of  the sequence and 
initial trajectory conditions. 

For this reason, to enforce partial and global reproducibility of  the calculation, 
the random number calls of one trajectory were chained to those of  the previous 
one, by generating sequentially at host level only one integer number per trajectory. 
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Such a number acts as a seed for the generation of the needed subset of numbers 
inside each worker node. This allows a unique correspondence between the trajectory 
sequential position and the generated set of pseudo-random numbers. In practice, 
this was obtained by prescribing that when the host processor starts a new cycle of 
the trajectory loop, a new random number and seed are generated starting from the 
seed of  the previous trajectory. Then the host waits for the next available worker 
processor, to which it sends the seed necessary for starting the integration of a new 
trajectory. Starting from the received seed (see scheme 2), each node locally generates 

Node p r o g r a m  

Receive initial data from host and do initializations 
End = false 

while End = false do 

Receive msg of any type from host 
if msgtype = msgend then End = true 
else 

Use random seed received to generate other random quantities 
Integrate the trajectory and update statistical indicators 
Send msg of type msgdone to host 

end_whi le  

Cube collapsing algorithm 

Scheme 2. Structure of the node program. 

all pseudo-random numbers needed to define the initial conditions for the assigned 
trajectory. By adopting this method, the behaviour of the sampled events is totally 
deterministic. 

Another feature of the parallel implementation is that associated to the collection 
of  results needed to perform the final statistical analysis. During the calculation, 
trajectory results are stored locally by instructing each node to update the statistical 
indicators after integrating every trajectory. Once its last trajectory is integrated, 
each node begins a "dimensional collapsing" algorithm [8] to collect the distributed 
results on the host. According to this algorithm, performed once for each dimension 
of  the n-dimensional hypercube, results are sent by the higher numbered to the next 
lower numbered neighbour node in that dimension. At iteration m of the algorithm 
(the iteration index goes from n to 0), the m-dimensional cube is divided into two 
( m -  1)-dimensional sub-cubes. All the nodes of the sub-cube for which the bit of 
position m in the node address is equal to 1 send in parallel their partial results to 
the nodes of  the other sub-cube connected in the m dimension (for which the same 
bit in the node address is equal to 0). The receiving nodes combine (add, in this 
case) the received results to local ones and then repeat the same algorithm for the 
next cube dimension. This continues until global results are contained in node 0 
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(node 0 forms a 0-dimensional hypercube) and from there are sent to the host. The 
flow of the results forms a binary tree pattern with logarithmic depth. The same 
algorithm, in the opposite direction, is used by the operating system to load nodes 
and to broadcast messages. When the number of  nodes is large, such an algorithm 
with logarithmic-cost turns out to be very efficient. 

The parallel trajectory program has been run on three different NCUBE 
machines [3-6] :  NCUBE/4, NCUBE/10 and NCUBE 2 6401. 

The NCUBE/4 with 16 processing nodes was used during the development 
of the program. The NCUBE/10 with 512 processing nodes was used for production 
runs. 

The NCUBE 2 6401 was used for advanced speedup measurements. It belongs 
to the second generation of NCUBE machines released in June 1989. Many 
improvements, both in the hardware and in the system software, have been introduced 
in these machines. The microprocessor (500000 transistors) includes a 64-bit CPU 
and floating-point unit, 14 bi-directional communication charmels, 4 instruction 
pipelines, a data cache of 8 operands, and an instruction cache of 128 bytes. The 
message routing functions are hardware implemented. The peak transfer rate is 2.22 
Mbytes/s per channel in each direction. The routing unit allows a direct pass- 
through of  messages without interrupting intermediate nodes. Running at a clock 
rate of 20 MHz, the processor is rated at 7.5 MIPS and 3.3 MFLOPS single precision 
or 2.4 MFLOPS double precision. Per-node memory ranges from 1 to 64 Mbytes. 

3. Performance analysis and results 

The main elements which affect the performance of an algorithm on a highly 
parallel architecture without shared memory are the load unbalancing and the 
communication overhead. The different play of these elements leads to a significant 
variation of  the measured speedup. 

3.1. SPEEDUPS 

The speedup (S) is defined as the ratio between the time required to execute 
a given program on a single processor and on a set of concurrent processors. If Ts 
is the execution time of the sequential program on a single processor and Tp is the 
elapsed time of the parallel program on P processors, the speedup is given by 

S = T s .  (3.1) 
rp 

For a real problem like the one reported here, it may be difficult to measure 
the speedup when using the above formulation. The first difficulty concerns the 
impossibility of running the sequential code on a single node due to memory 
requirements. In fact, data for a significant run may not fit into the small local 
memory of  one node. Moreover, also without memory constraints, a time consuming 
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application like the integration of a batch of  four thousand trajectories (as is usually 
needed for a sufficiently accurate rate constant evaluation) would take more than 
four days to run on a single NCUBE node, resulting in an impractical and senseless 
effort. For this reason, the speedup definition given in (3.1) has been used only for 
reduced size problems (e.g. 256 trajectories). 

Table 1 

Elapsed time (s), fixed speedup and efficiency 
for runs of 256 trajectories on an NCUBE/4 

P = I  P=2 P=4 P=8 P=16 

Tp 28997  14563 7320 3718 1902 
S 1 1.99 3.96 7.80 15.24 
E 1 0.995 0.990 0.974 0.952 

Table 1 shows the variation of the parallel execution time Tp, the fixed 
speedup S, and the efficiency factor E as a function of the number of used nodes P 
for NCUBE/4. The efficiency E is defined as the ratio between the speedup S and 
the number of  nodes P. The number of computed trajectories (256) and the initial 
conditions are the same for all runs. It can easily be seen from the values reported 
in the table that also with a reduced size problem, our reactive scattering program 
exploits efficiently the parallelism. An efficiency factor of  0.952 when using sixteen 
nodes is certainly a promising result. 

For larger problems and highly parallel environments, it is more convenient 
to measure the scaled speedup as proposed in refs. [8,9]. The scaled speedup (SS) 
is defined as 

s + p P  
SS = ~ ,  (3.2) 

s + p  

where s is the amount of  time spent in the scalar part of  the program (program 
loading, I/O operations, data initializations, serial bottlenecks), and p is the amount 
of  time spent in parallel on P processors. In eq. (3.2), the factor s + pP gives an 
estimate of  the time that the parallel program would take on a single processor. 
Scaled speedup measures, therefore, how much the execution time of  a problem of  
size kn on kP processors approaches that of  a problem of  size n on P processors. 

Table 2 shows the execution times Tp, the scaled speedup SS, and the efficiency 
factor E as a function of the hypercube dimension for the NCUBE/10. The average 
number of trajectories computed by every node (16) and the initial conditions are 
the same for all runs. From the values reported in table 2, it can be seen that when 
the size of  the problem is large with respect to the number of nodes, the efficiency 
approaches its physical limit. It has to be emphasized here that, for this kind of  
applications, the degree of parallelism that can be usefully exploited is bound only 
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Table 2 

Elapsed time (s), scaled speedup and efficiency running 
an average of 16 trajectories per node on an NCUBE/10. 

P = I  P = 2  P = 4  P = 8  P = 1 6  P = 3 2  P = 6 4  P = 1 2 8  P = 2 5 6  P = 5 1 2  

Tp 1577 1479 1590 1574 1572 1591 1578 1580 1580 1657 

SS 1 1.998 3.994 7.986 15.95 31.96 63.88 127.6 255.1 508.4 

E 1 0.999 0.998 0.998 0.996 0.998 0.998 0.998 0.996 0.993 

to the size of the problem. If the number of trajectories to evaluate is doubled, the 
number of processors can also be doubled with little loss in efficiency. This means 
that when increasing the size of the problem, the parallel part p of the program 
scales much more than the scalar part s. The only bottleneck that could downgrade 
the scalability of the reactive scattering parallel program is the trajectory dispatching 
carried out by the single master process. The effect of this centralization is already 
evident from the value referred to the evaluation of 8192 trajectories on 512 nodes, 
shown in table 2. To optimize this program for a computer with higher parallelism 
(thousands of processors), the bottleneck could easily be removed by distributing 
the dispatching on more processors running in parallel, each one controlling a 
subset of the slave nodes. 

The integration of a batch of four thousand trajectories has been performed 
also on an NCUBE 2 6401 with sixteen processors. The execution time was about 
7.5 times smaller than on the NCUBE/10 using the same number of nodes. 

3.2. LOAD UNBALANCING AND COMMUNICATION OVERHEAD 

Figure 1 shows a schematic diagram of the program execution times for both 
the host and the worker nodes. As defined above, the parallel execution time Tp 
includes a sequential part s (s' + s", where s '  is the time needed to read the input 
data from file, load the program on the nodes and broadcast these data, while s" 
is the time needed to perform the statistical analysis and to write results on file) 
and the parallel time p. The time p is the time elapsed between the sending of the 
first P trajectories to the P nodes and the last receiving of the results. In the figure, 
q ,  t2 . . . . .  tj . . . . .  te are the running times relative to 1, 2 . . . . .  j . . . . .  P individual 
worker nodes (including communication time), and twl, tw2 . . . . .  twe are the 
corresponding node waiting times. 

Tp is affected by communication overhead and load unbalancing. In our 
application, messages are exchanged between the slave processors only during the 
results collection and therefore the time spent for communication is small. On the 
contrary, a careful analysis of the execution times shows that running times of 
different nodes may be significantly unequal because of the difference in number 
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node P 

ncxle j 

t g twp 
I 

t,/ 

n(xle 2 

n:xlc 1 

host s' P 

t 2 tw2 
I 

t 1 twl 
I 

0 .~" time s'+p Tp 

Fig. 1. Schematic diagram of execution times for host and node processors. 

and length of the trajectories dispatched on a given node. As an example on an 
NCUBE/10 node, the average elapsed time per trajectory is about 95 s, while the 
actual time needed for the integration of a given trajectory may be significantly 
larger or shorter. Therefore, it may happen that one node begins its execution on 
the last trajectory in the sequence when all other nodes are close to ending their 
work. This results in a significant unbalance of  the workload. 

To quantify the efficiency of the use of parallelism, the quantities T I and Tw 
and their relationship with Tp have to be worked out (TI and Tw are the sum of  node 
individual working and waiting times t i and twi, respectively). 

If tj is the time spent by the lowest node (say node j )  to evaluate the last 
ending trajectory, we have 

p = t i. (3.3) 

All other nodes i, with i ;e j ,  accomplish their work before time s ' +  p and 
then wait until the execution on node j comes to an end. Then for all nodes we have 
(see fig. 1) 

p = t i + twi. (3.4) 

Therefore, the time Tp of  a parallel execution can be written as 

P P 

f~twi = s + TI/P + Tw/P,  (3.5) 
1 1 1 

Tp= s + p = s  + - -  Z ( t i +  twi)= S + - -  Z t i + ' - f i  
P i=1 P i=1 i=1 

where the ratio TI/P represents the time usefully spent by the nodes for processing 
and communicating,  while the ratio Tw/P indicates the time wasted because of  load 
unbalancing. The calculation of both quantities TI and Tw needs only the evaluation 
of  t i i f  use is made of  eq. (3.2). 
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Fig. 2, Fraction of 7p spent as 7]/P and 7\v/P for 
runs of different batches of trajectories on 16 nodes. 
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Figure 2 shows the fraction of time Tp spent as TI/P and Tw/P for a fixed 
number of processors (16) when varying the size of the problem. It can easily be 
seen from the figure that when the number of trajectories is not much larger than 
the number of processors, Tw/P is a considerable part of Tp. This means that in this 
case the load unbalance is large. 

Figure 3 shows the fraction of time p spent as TI/P and Tw/P for a fixed size 
of the problem (256 trajectories) when varying the number of nodes. As can easily 
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Fig. 4. Value of the fixed speedup for a batch 
of 512 trajectories evaluated on 16 processors 
as a function of  the scheduling granularity. 

be seen from fig. 3, an increase of the number of nodes increases the load unbalance. 
As a result (and as apparent from tables 1 and 2), this worsens the efficiency of E. 

Figure 4 shows the dependence of the speedup from the number of trajectories 
that the master process sends at a time to each node. Values of the figure are 
referred to the evaluation of 512 trajectories on 16 nodes. As can easily be seen, 
the speedup is a sensitive function of the scheduling granularity. In fact, the speedup 
decreases about 5.5% when the number of trajectories sent at a time increases from 
1 to 16. The effect of increasing the number of trajectories dispatched at a time on 
each node is a decrease of the number of messages exchanged between the host and 
the nodes; this lower communication overhead, however, does not adequately account 
for the increase of the load unbalance. 

The problem of balancing the workload among the nodes while keeping the 
communication overhead low is central to achieve high efficiency. As often happens, 
the best strategy is a mixed one: for large problems, the largest speedup has been 
obtained by initially sending to each processor more (say 32) trajectories at a time 
and then, when the largest part of trajectories has been computed, by reducing the 
scheduling granularity to one. In this way, the number of exchanged messages is 
significantly reduced without an increase of the load unbalance. 

6. Conclusions 

We have developed a quasiclassical reactive scattering program for a massively 
parallel machine. Because each trajectory is a completely independent CPU bound 
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process, this type of calculation has been found to fit perfectly to a massively parallel 
architecture. The program has been properly designed for taking advantage of a 
hypercube computing architecture. Input data have been reorganized to optimize their 
distribution. The pseudo-random number sequence generation has been structured to 
guarantee its uniqueness while enhancing the parallelism. The statistical analysis has 
been broken into partial ones performed on each node during the parallel computation 
of the trajectories to reduce communications. Communication overhead has also been 
minimized by collecting final results using a dimensional collapsing algorithm. 

As a result, very large fixed and scaled speedups have been measured. Trends 
of speedups with the variation of the problem size, number of processors and scheduling 
granularity have been given. A quantification of the impact of waiting times on the 
efficiency of the program has been attempted.We have found that the algorithm used 
is scalable and seems to be adaptable, with minor modifications (e.g. by structuring 
in parallel the dispatching algorithm), to even larger parallel architectures. A comparison 
with execution times obtained on some popular vector/parallel supercomputers shows 
that this type of problems can be dealt with more efficiently on highly parallel 
hypercube machines. From runs performed, further significant execution time reductions 
are expected to be obtained when using the NCUBEs of the new generation. 

In conclusion, our work demonstrates that massive parallelism can be considered 
not only an exciting field for academic research, but also a practical tool for working 
out numerical solutions to applied research problems. 
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